
John Krasich
Chris Hoorn

Sean Cavanaugh
Capsule #2: Lists and Iterators

Linked list

 A linked list is a data structure that stores a sequence of objects and can quickly add or remove one
object.

 Rather than using an array, a linked list uses nodes to store a value and has a reference determined
by the nodes next to it. Whereas adding or removing an element alters the reference to every
element that follows it, adding or removing a node only affects the neighboring elements.

 Similar to an ArrayList, the LinkedList class is a generic class, meaning it can store whatever type
object is specified by the programmer.

 The LinkedList javadoc can be found here:
http://download.oracle.com/javase/6/docs/api/java/util/LinkedList.html

 To traverse a linked list, a new ListIterator<Object> must be constructed and then called. For
example, to sort through LinkedList<String> strings, you must write:

 ListIterator<String> iter = strings.listIterator();
 while(iter.hasNext()) Iter.next();

It is smart to check if the list has another node before calling the next() method.

Implementing Linked Lists

 A node stores both an object (node.data) and a reference to the object next to it (node.next). These
instance variables are kept public because they are accessed frequently.

 The processes of adding a removing are very similar in code. For example, the addFirst method:

public void addFirst(Object element) {
 //creates the new Node.
 Node newNode = new Node();
 //sets the object of the node.
 newNode.data = element;
 //moves the old first node next to the new node, and sets the reference to the new nodes neighbor
 newNode.next = first;
 //places the new node into the first position
 first = newNode;
}

Other adding and removing methods are similar, editing the “location” of the new element’s neighbor
and then placing the new node in the correct place.

 The LinkedList class uses the listIterator() method to create a new LinkedListIterator. This
implements the interface ListIterator, which contains the methods used by the LinkedListIterator.

Abstract Data Types:

Viewing the abstract data types helps indicate the efficiency of their implementations. An ArrayList

implements both the abstract interfaces Array and List. These efficiencies are as follows:

Operation Abstract Array Abstract List

Random Access O(1) O(n)

Linear Traversal Step O(1) O(1)

Add/Remove an element O(n) O(1)

http://download.oracle.com/javase/6/docs/api/java/util/LinkedList.html

